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Abstract

The cross-correlation matrix of daily returns of stock market indices in a diverse set of 37
countries worldwide was analyzed. Comparison of the spectrum of this matrix with predictions
of random matrix theory provides an empirical evidence of strong interactions between individ-
ual economies, as manifested by three largest eigenvalues and the corresponding set of stable,
non-random eigenvectors. The observed correlation structure is robust with respect to changes
in the time horizon of returns ranging from 1 to 10 trading days, and to replacing individual
returns with just their signs. This last observation con(rms that it is correlations between signs
and not absolute values of 2uctuations, which are mostly responsible for the observed e3ect.
Negative changes in the index are somewhat more correlated than the positive ones. Also, in our
data set the reaction of Asian stock indices to changes in European and American ones persists
for about 3 days. c© 2001 Elsevier Science B.V. All rights reserved.

PACS: 89.65.Gh; 89.75.Fb; 05.40.Ca; 89.70.+c

In spite of the tremendous importance that current public opinion places on issues
of globalization of the world’s economy, its sources and consequences remain poorly
understood. Large downturns and collapses of the economic and (nancial situation in
one country are routinely blamed on recent events in other countries. This point of
view is reinforced by sensational newspaper headlines like “Latin American markets
catch the asian 2u”. The level of globalization of a diverse set of 50 developed coun-
tries and key emerging markets worldwide was recently measured and reported in the
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A.T. Kearney=Foreign Policy Magazine Globalization IndexTM [1]. The factors selected
to contribute to this index are extremely diverse and include, for example, volumes of
inward- and outward-directed foreign investments, the amount of international travel
and phone calls, number of servers of the World Wide Web, etc. Among other things,
globalization is expected to manifest itself in the dynamics of (nancial indices of
stock markets in di3erent countries. Indeed, it is reasonable to expect that a signi(cant
coupling of the economy of a given country to the rest of the world (e.g. through
foreign investments), would make its stock index more susceptible to changes in the
world economic climate.
In this work, we suggest a simple measure of the level of (nancial globalization of a

given country based on the analysis of cross-correlations between stock market indices
in di3erent countries and regions of the world. The main object of our study is the
N ×N empirical correlation matrix Cij of index price 2uctuations in a large number of
individual countries (N =37 in our study). The matrix is constructed by applying the
formula Cij =(1=T )

∑
t=1;T �xi(t)�xj(t) to the set of normalized local currency returns

of individual indices, recorded over a period of T trading days. A return �Xi(t) of the
stock index Si(t) with the time horizon Lt is usually de(ned as �Xi(t)= ln Si(t+Lt)−
ln Si(t) � (Si(t + Lt) − Si(t))=Si(t). Di3erent markets are characterized by di3erent
volatilities of their stock market indices. In order to be able to detect similarity in
the pattern of returns in di3erent countries one needs to exclude volatility e3ects by
using normalized returns �xi(t): �xi(t) is constructed by o3setting each �Xi(t) by its
empirical average value 〈�Xi〉, and normalizing it by its empirical variance (volatility):
�xi(t)= (�Xi(t) − 〈�Xi〉)=

√
〈�X 2

i 〉 − 〈�Xi〉2. The matrix Cij de(ned this way has the
property that in the absence of correlations and in the limit T�N it approaches the
unity matrix. However, in real life, the number of trading days T in one’s dataset is
always (nite. As a result an empirically measured matrix Cij is always dressed by a
substantial amount of noise. It is exactly the task of separating any real correlations
present in the signal from this spurious noise, that makes the analysis of real world data
a non-trivial task. Mainstream economics literature was mostly devoted to a detailed
analysis of these correlations for just a pair of stock indices, e.g. those of New York
and Tokyo stock exchanges see e.g. Refs. [2,3], but even if a large correlation matrix
was considered, little e3ort was made to reliably separate the signal from the noise.
As is common in statistics, the job of looking for correlations gets much simpler
when the number of correlated signals with similar properties is large. In our case,
this corresponds to a large number of country indices N . The spectral analysis of the
correlation matrix followed by a comparison of its spectrum with predictions of the
random matrix theory (RMT) is a useful tool, which allows one to detect even weak
correlations between multiple signals. This method was recently successfully applied
towards quantifying reproducible correlations between price 2uctuations of hundreds
of stocks traded on the stock exchange of a single country [4,5], and two countries
[6,7]. In this work, we go one step further and apply the techniques pioneered in
Refs. [4,5] to a large number of stock market indices in a geographically diverse set of
countries. An alternative method of analyzing the matrix of correlation coePcients by
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Fig. 1. The histogram of eigenvalues of the matrix Cij . Lines are de(ned by Eq. (1) with T =226, N =37,
and various values of , corresponding to the exclusion of 2uctuations contained in the largest (2 = 0:76),
or two largest (2 = 0:67) eigenvalues. The inset shows the overlap of eigenvectors computed for two
consecutive 113-day intervals as a function of the rank of an eigenvalue. The three (perhaps even four)
leading eigenvectors clearly have a higher than random overlap.

constructing the minimal spanning tree (MST) was described in Ref. [8], and recently
applied to cross-correlations of world (nancial indices in Ref. [9]. Authors of this work
also found a non-trivial correlation pattern manifested by a strong regional grouping
of indices in the MST.
The raw data we had at our disposal consists of the daily open, high, low, and close

prices of leading market indices (one per country) in 15 European, 14 Asian, and eight
North and South American countries. We (rst calculated the daily open-to-close returns
of each of these indices. We further selected from our set only those trading days for
which we had a valid record for each and every country on our list. All data have
gaps in them e.g. due to national holidays, when a particular market was closed. That
left us with precisely 226 trading days approximately uniformly distributed between
April 28, 1998 and December 20, 2000. Each of these remaining daily returns was
normalized in such a way that

∑226
t=1 �xi(t)= 0, and

∑226
t=1 �xi(t)2 = 1. The histogram

of all 37 eigenvalues of the correlation matrix Cij, shown in Fig. 1, revealed that the
majority of eigenvalues are consistent with a null hypothesis of independent identically
distributed Gaussian variables �xi(t). The prediction for the eigenvalue density

�RMT(�)=
T

2�2N

√
(�− �−)(�+ − �)

�
(1)

given for this situation by (RMT) ([10], for the derivation of a more general formula
using physics methods, see Ref. [11]) reasonably agrees with our data below � � 1:3.
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Fig. 2. Components of the three leading eigenvectors calculated for two consecutive 113-day intervals as a
function of the country number (see Table 1).

This formula, derived in the limit of very large T and N , predicts sharp lower and
upper cuto3s, �± = 2(1 + N=T ± 2

√
N=T ), in the eigenvalue density. This gives a

strict quantitative test for deciding whether a particular eigenvalue re2ects a real cor-
relation signal present in the data, or is just a spurious noise e3ect caused by the (nite
length T of the data set. In principle, any eigenvalue signi(cantly above the upper
cuto3 �+ should be treated as signal. The variance  of �xi(t) can be renormalized
from its starting value =1 by the presence of correlations in the data. Indeed, we
obtain the best (t of the noise-band part of the spectrum for ̃2 = 0:67, consistent with
the empirically observed correlations. The three largest eigenvalues 8.7, 3.5, and 2.2
suPciently exceed the theoretical upper limit �+ =1:97 to be attributed to true corre-
lation patterns. Indeed, in a control test we found that the probability for the largest
eigenvalue of a correlation matrix, constructed from uncorrelated univariate Gaussian
variables with N and T as our data, to exceed 2.2 is as low as 0.05%. This should
be contrasted with a typical 5% to 1% con(dence level of correlations between a pair
of individual indices reported e.g. in Refs. [2,3]. In order to check the reproducibility
of largest eigenvalues and their corresponding eigenvectors, we divided our sets into
two consecutive 113-point subsets and repeated our analysis. The existence of 3 outlier
eigenvalues did not change, however, their values were slightly modi(ed. The largest
eigenvalue was measured to be 9:8 during the (rst time interval, and 7:8 during the
second. As can be concluded from the inset of Figs. 1 and 2, the corresponding eigen-
vectors are remarkably stable with overlaps between eigenvectors for the (rst and the
second subintervals being 0:95, 0:82, and 0:68 for the largest, the second, and the third
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eigenvalues, respectively. The largest possible overlap, realized when two eigenvectors
are identical, is equal to 1. On the other hand, overlaps between eigenvectors from the
noise-band between �− and �+ seem to be purely random (see inset of Fig. 1). Similar
e3ects but with larger number of outliers above �+ (up to around 25) were observed
[4,5] for individual stocks traded on US stock exchanges.
Components of the three highest ranking eigenvectors, measured for our data both

in its entirety, and when divided in two equal subintervals, are given in Table 1 and
plotted in Fig. 2. The (rst interesting result is that virtually all components of the
largest eigenvector (e.v.) are positive, which means that there are no indices which are
anti-correlated with others. Since eigenvectors corresponding to di3erent eigenvalues
have to be orthogonal to each other, other eigenvectors must contain negative com-
ponents. The (rst (largest) eigenvector has strong support in European and American
sectors, while its components in the Asian sector are somewhat smaller (yet still posi-
tive). The second eigenvector, on the other hand, is largely dominated by Asian stocks
while the third one by American stocks.
Another interesting observation is that all three eigenvector components for some of

the Asian emerging markets such as China, India, Pakistan, and Taiwan are too small to
be detected. That means that in the (rst approximation, these indices are not in2uenced
by the world index dynamics at all. In Europe, we saw no such correlation-free coun-
tries. However, the eigenvector components of Greece, Portugal, Russia, and Turkey
were somewhat smaller than those of other European stock indices. North and South
American stock indices have approximately equal components with, perhaps, only Peru
and Venezuela somewhat falling behind.
It is interesting to compare our (ndings to those which were previously obtained

for weekly returns using the minimal spanning tree (MST) technique [9]. In this work,
it was also observed that indices are strongly grouped by the region with most in-
dices of, say, Asian countries forming a separate branch of the MST. The market
indices of Turkey, Greece, India, and Pakistan were found to be weakly correlated
with the world index in both Ref. [9] and our study. We believe that the spectral
analysis method, used in our work, gives a complimentary picture of reproducible cor-
relations contained in the matrix Cij to that of the MST method. One of the strong
points about the spectral analysis method is that it gives a clear quantitative crite-
rion for separating the signal from the noise. Also, with just a few large eigenvalues
and their corresponding eigenvectors the output of the spectral analysis is easier to
interpret and compare between, say, di3erent time windows than that of the MST
technique.
The leading eigenvector component of a stock market index of a given country can

serve as a rough measure of the level of globalization of the (nancial sector of this
country. This point of view is illustrated in Fig. 3, where the largest eigenvalue com-
ponent is plotted as a function of the rank of the country in the A.T. Kearney=Foreign
Policy Magazine Globalization IndexTM [1]. One can see a clear correlation between
high globalization rank (1 being the highest and 50 the smallest) and the leading
eigenvector component.
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Table 1
Components of three leading eigenvectors computed for the whole 226-day time interval and its (rst and second halves. The last column is the rank of the globalization
index of the country as de(ned in Ref. [1]

Index Country Index name, symbol 1st, e.v. 2nd, e.v. 3rd, e.v. Rank in [1]
All days 1st half 2nd half All days 1st half 2nd half All days 1st half 2nd half

1 Austria ATX, ˆ ATX 0.20 0.22 0.12 0.02 0.03 0.03 −0.19 −0.19 −0.30 7
2 Belgium BEL-20, ˆ BFX 0.16 0.19 0.11 −0.17 −0.21 −0.11 −0.12 −0.19 −0.04 N=A
3 Denmark KFX, ˆ KFX 0.21 0.21 0.21 0.07 0.06 0.11 −0.17 −0.11 −0.23 11
4 Finland HELSINKI GENERAL, ˆ HEX 0.22 0.25 0.25 0.02 −0.05 0.07 −0.14 −0.08 −0.13 5
5 France CAC40, ˆ FCHI 0.21 0.21 0.22 −0.28 −0.28 −0.26 −0.15 −0.06 −0.19 16
6 Germany DAX, ˆ GDAXI 0.27 0.25 0.28 −0.14 −0.15 −0.11 −0.14 −0.09 −0.17 14
7 Greece GENERAL SHARE, ˆ ATG 0.10 0.15 −0.02 0.07 0.07 0.04 0.10 0.00 0.16 24
8 Netherlands AEX GENERAL, ˆ AEX 0.23 0.22 0.22 −0.25 −0.24 −0.25 −0.17 −0.14 −0.19 2
9 Norway TOTAL SHARE, ˆ NTOT 0.22 0.20 0.25 0.07 0.03 0.14 −0.12 −0.11 −0.15 9

10 Portugal BVL30, ˆ BVL30 0.14 0.12 0.17 −0.26 −0.29 −0.21 −0.07 −0.07 −0.01 15
11 Russia MOSCOW TIMES, ˆMTMS 0.12 0.10 0.15 0.05 0.11 −0.06 −0.07 −0.14 0.01 45
12 Sweden STOCKHOLM GENERAL, ˆ SFOG 0.26 0.25 0.27 0.01 0.02 0.01 −0.17 −0.13 −0.20 3
13 Switzerland SWISS MARKET, ˆ SSMI 0.21 0.24 0.12 −0.23 −0.23 −0.19 −0.03 −0.01 −0.16 4
14 Turkey ISE NATIONAL-100, ˆ XU100 0.11 0.12 0.08 0.17 0.16 0.17 −0.08 −0.17 0.12 37
15 UK FTSE100, ˆ FTSE 0.26 0.25 0.29 0.01 −0.05 0.06 −0.17 −0.15 −0.11 8
16 Australia ALL ORDINARIES, ˆ AORD 0.11 0.11 0.11 0.35 0.28 0.39 −0.02 −0.06 0.07 23
17 China SHANGHAI COMPOSITE, ˆ SSEC 0.00 0.01 −0.03 0.07 0.06 0.08 −0.04 −0.01 −0.12 48
18 Honk Kong HANG SENG, ˆ HSE 0.13 0.11 0.16 0.25 0.23 0.23 −0.17 −0.19 −0.03 N=A
19 India BSE30, ˆ BSESN 0.02 0.02 0.03 0.07 0.21 −0.07 0.03 −0.07 0.12 49
20 Indonesia JAKARTA COMPOSITE, ˆ JKSE 0.06 0.07 0.03 0.24 0.28 0.18 0.05 0.02 0.04 38
21 Japan NIKKEI 225, ˆ N225 0.08 0.07 0.10 0.30 0.22 0.36 −0.07 −0.07 −0.01 29
22 Malaysia KLSE COMPOSITE, ˆ KLSE 0.07 0.06 0.09 0.15 0.19 0.01 −0.17 −0.28 0.08 20
23 New Zealand NZSE40, ˆ NZ40 0.07 0.09 0.04 0.29 0.25 0.32 0.00 0.01 −0.01 21
24 Pakistan KARACHI100, ˆ KSE 0.00 0.00 −0.01 0.00 0.03 −0.02 0.08 0.08 −0.08 N=A
25 Philippines PSE COMPOSITE, ˆ PSI 0.07 0.06 0.09 0.17 0.19 0.13 0.18 0.27 −0.01 34
26 Singapore STRAITS TIMES, ˆ STI 0.13 0.10 0.19 0.24 0.25 0.19 0.03 0.03 0.11 1
27 South Korea SEOUL COMPOSITE, ˆ KS11 0.09 0.07 0.10 0.19 0.15 0.23 −0.03 0.10 −0.11 31
28 Taiwan TAIWAN WEIGHTED, ˆ TWII 0.00 0.01 0.00 −0.03 −0.01 −0.08 −0.09 −0.07 −0.08 N=A
29 Thailand SET, ˆ SETI 0.12 0.11 0.12 0.08 0.14 −0.03 −0.07 −0.06 −0.02 30
30 Argentina MERVAL, ˆMERV 0.21 0.21 0.19 0.01 0.08 −0.08 0.31 0.27 0.31 39
31 Brazil BOVESPA, ˆ BVSP 0.19 0.17 0.20 −0.04 −0.01 −0.08 0.42 0.44 0.32 44
32 Canada TSE 300 COMPOSITE, ˆ TSE 0.23 0.25 0.20 −0.06 0.01 −0.14 0.17 0.14 0.16 10
33 Chile IPSA, ˆ IPSA 0.20 0.19 0.19 −0.01 −0.02 0.02 0.30 0.29 0.30 26
34 Mexico IPC, ˆMXX 0.20 0.18 0.22 −0.06 −0.08 −0.03 0.29 0.26 0.30 41
35 Peru LIMA GENERAL, ˆ IGRA 0.17 0.19 0.11 0.14 0.17 0.11 0.17 0.10 0.20 43
36 USA SP500, ˆ SPC 0.21 0.20 0.21 −0.13 −0.07 −0.21 0.31 0.32 0.26 12
37 Venezuela IBC, ˆ IBC 0.13 0.12 0.12 0.10 0.13 0.07 0.09 0.04 0.04 35
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Fig. 3. The component of the highest ranking eigenvector as a function of the globalization rank of the
country from Ref. [1]. The straight line is a linear (t to the data.

We further decided to explore how the outcome of the above eigenvector=eigenvalue
analysis dependent on the time horizon Lt over which one computes the returns of an
index. When instead of daily open-to-close returns we repeated our analysis for one
day close-to-close returns, the largest eigenvalues have changed from 2:2; 3:5, and 8:7
to 2:1, 3:7, and 11:0, respectively. A noticeable 25% increase in the largest eigenvalue
perhaps can be attributed to markets having more time to respond to the news. Also,
while daily open-to-close returns in Asia, Europe, and Americas have almost no over-
lap (i.e., time when two markets are simultaneously open), this situation is improved
when one considers daily close-to-close 2uctuations. As shown in Fig. 4, the largest
eigenvalue continued to grow (albeit slowly), as the time horizon of close-to-close
returns was changed from 1 to 10 trading days (weekly return usually corresponds
to just (ve trading days), reaching the value of 16.2 for the longest time horizon.
However, the largest eigenvectors computed for these very di3erent time horizons
remained remarkably stable. For example, the average overlap between the highest
rank eigenvectors computed for these 10 di3erent time horizons turned out to be 0.99,
i.e., these eigenvectors on average are only 1% di3erent from each other! Overlaps
were somewhat smaller for lower ranking eigenvectors with average values of 0.77 for
the second and 0.61 for the third largest eigenvalues. Still, as can be seen in the inset
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Fig. 4. Three largest eigenvalues of the correlation matrix of close-to-close returns as a function of the time
horizon, i.e., the number of days used to calculate the return. The inset shows the components of the third
eigenvector for all 10 time horizons.

of Fig. 4, even in the third eigenvector many of the main features are very robust with
respect to changes in the time horizon.
In an attempt to establish how relevant are magnitudes (as opposed to signs) of price

2uctuations to the observed correlation patterns, we have repeated the above analysis
using �Xi(t)= sign(Si(t + Lt) − Si(t)). The observed eigenvectors for di3erent time
horizons had 0.99 average overlap with those computed using �Xi(t)= ln Si(t +Lt)−
ln Si(t). The largest eigenvalue again grew with the time horizon from 7.4 for signs of
one day close-to-close returns to 10.4 for signs of 5-day close-to-close returns. Lower
rank eigenvectors of the correlation matrix of signs also had substantial overlaps of
0.93 and 0.86 with normal ones. This allows us to conclude that it is signs and not
magnitude of returns which are mostly relevant for the observed correlation patterns.
Since the psychology and consequently actions of market participants during market

crashes di3ers from those during market rallies, one expects to see the di3erence in
correlations between positive and negative changes in indices. To this end, we have
calculated matrices C+

ij and C−
ij using only positive and negative parts of signals xi(t)

correspondingly. The largest eigenvalues of these two matrices for the whole 226-day
interval were measured to be 13.7 and 16.8 correspondingly. From this one can infer
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that negative changes (market “crashes”) appear to be more correlated in di3erent coun-
tries than the positive ones (market “rallies”). This e3ect is reproducible. Indeed, when
we subdivided our data set in two 113-day intervals, the largest eigenvalues were mea-
sured to be �+ =14:3, �− =18:2 for the (rst subinterval and �+ =13:8, �− =15:9 for
the second one. As one can see in both cases �−¿�+ indicating stronger correlations
between crashes.
In what was described above, we always computed (nearly) synchronous correla-

tions of di3erent market returns on the same day (or the same week for longer time
horizons). One has to take into account that due to the time-zone di3erence, daily
open-to-close returns computed on the same trading day (say, February 13) are not
actually synchronous with Asian stock markets in the lead, followed by European and
later with a small overlap by American markets. However, the signi(cance of this
time-zone di3erence for say weekly returns is much less pronounced. To check if the
predictability of daily returns is restricted to the same trading day or survives for sev-
eral days, we have investigated the correlations in daily close-to-close returns with all
Asian indices shifted by S days. The negative values of the shift S corresponds to cor-
relations of daily returns of Asian indices |S| days after an observed pattern of returns
of the European and American stocks, while positive S corresponds to Asian indices
preceding the rest of the world by S days. The simplest way to detect the presence of
correlations in this case is by calculating the average correlation coePcient connecting
any of the 14 Asian indices with 15 + 8=23 European and American ones. The size
of the sample over which this average is taken is 14× 23=322. To check for repro-
ducibility of the observed patterns, we divided our data set consisting of 226 trading
days into three equal length segments and calculated this average for each segment
independently. The results are shown in the main panel of Fig. 5. Reproducible corre-
lations seem to survive for up to 3 days on the negative part of the axis, corresponding
to the reaction of Asian stocks to changes in European and American indices. At least
the sign of the average correlation coePcient was found to be consistently positive in
all three of our segments. S =−1 has the largest magnitude of correlations. These (pos-
itive) correlations represent the next trading day reaction of Asian stocks to changes
in European and American ones. Due to time-zone di3erences, a somewhat smaller
(yet still positive) correlation coePcient observed for S =0 corresponds to the oppo-
site e3ect, i.e., the response of European and American stocks to the events in Asia
on the day before. Our results for S =0 and −1 are in agreement with positive cor-
relations between open-to-close returns at Tokyo and New York stock exchanges that
were previously reported in the economics literature [2,3] as well as in recent econo-
physics papers [12]. On the positive S side, there seems to be a reproducible negative
correlation at S =1 followed by a noisy signal for larger values of S. The inset to
Fig. 5 show the results of the same analysis for the whole 226-day interval when ei-
ther Asian, or European and Asian stocks are shifted by S days. It is interesting that
in this graph which has 3 times better statistics than the main panel of the (gure, there
seem to be oscillations of correlation coePcients with period of two trading days for
negative values of S.
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Fig. 5. The mean value of the correlation coePcient connecting Asian indices to the rest of the world as a
function of the shift S. Negative values of S correspond to Asian indices taken |S| days later than the rest
of the world. Three data sets were taking in three equal length subintervals of our data set. The inset shows
the same analysis repeated including all data points with Asian indices (circles) and Asian and European
indices (squares) shifted. Note oscillations for negative S.

Work at Brookhaven National Laboratory was carried out under Contract No. DE-
AC02-98CH10886, Division of Material Science, U.S. Department of Energy.
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